Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(2): e3941, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379252

RESUMO

Both the epigenetic changes and gut microbiota (GM) have attracted a growing interest in establishing effective diagnostics and potential therapeutic strategies for a number of diseases. These disorders include metabolic, central nervous system-related diseases, autoimmune, and gastrointestinal infections (GI). Despite the number of studies, there is no extensive review that connects the epigenetics modifications and GM as biomarkers that could confer effective diagnostics and confer treatment options. To this end, this review hopes to give detailed information on connecting the modifications in epigenetic and GM. An updated and detailed information on the connection between the epigenetics factors and GM that influence diseases are given. In addition, the review showed some associations between the epigenetics to the maternal GM and offspring health. Finally, the limitations of the concept and prospects into this new emerging discipline were also looked into. Although this review elucidated on the maternal diet and response to offspring health with respect to GM and epigenetic modifications, there still exist various limitations to this newly emerging discipline. In addition to integrating complementary multi-omics data, longitudinal sampling will aid with the identification of functional mechanisms that may serve as therapeutic targets. To this end, this review gave a detailed perspective into harnessing disease diagnostics, prevention and treatment options through epigenetics and GM.


Assuntos
Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Dieta , Epigênese Genética
2.
Chem Biol Interact ; 388: 110851, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145797

RESUMO

Short-chain fatty acids (SCFAs), generated through microbial fermentation of dietary fibers and proteins in the gut, play a pivotal role in maintaining intestinal integrity, cellular function, and the immune response. SCFAs, including butyrate, acetate, and propionate, are absorbed in the colon or excreted through feces, contributing to essential physiological processes. Butyrate, a primary energy source for colonocytes, exhibits anti-inflammatory properties and regulates key pathways, such as nuclear factor-κB (NF-κB) inhibition. SCFAs' impact extends beyond the intestines, influencing the gut-brain axis, systemic circulation, and folate metabolism. A decline in colonic SCFAs has been linked to gastrointestinal diseases, emphasizing their clinical relevance, while their effects on immune checkpoints, such as ipilimumab, provide intriguing prospects for cancer therapy. This mini-review explores SCFAs' diverse roles, shedding light on their significance in health and potential implications for disease management. Understanding SCFAs' intricate mechanisms enhances our knowledge of their therapeutic potential and highlights their emerging importance in various physiological contexts.


Assuntos
Gastroenteropatias , Neoplasias , Humanos , Ácidos Graxos Voláteis/metabolismo , Neoplasias/tratamento farmacológico , Butiratos , Sistema Nervoso Central/metabolismo , Epigênese Genética
3.
AMB Express ; 13(1): 16, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36754883

RESUMO

The contribution of dysbiotic gut microbiota configuration is essential when making reference to the metabolic disorders by increasing energy. It is important to understand that the gut microbiota induced metabolic disease mechanisms and inflammations. Thus it is imperative to have an insight into the state of all chronic subclinical inflammations influencing disease outcomes. However, from the emerging studies, there still exist inconsistencies in the findings of such studies. While making the best out of the reasons for inconsistencies of the findings, this review is designed to make a clear spell out as to the inconsistence of gut microbiota with respect to diabetes. It considered gut-virome alterations and diabetes and gut-bacteriome-gut-virome-alterations and diabetes as confounding factors. The review further explained some study design strategies that will spontaneously eliminate any potential confounding factors to lead to a more evidence based diabetic-gut microbiota medicine. Lipopolysaccharide (LPS) pro-inflammatory, metabolic endotoxemia and diet/gut microbiota insulin-resistance and low-grade systemic inflammation induced by gut microbiota can trigger pro-inflammatory cytokines in insulin-resistance, consequently, leading to the diabetic condition. While diet influences the gut microbiota, the consequences are mainly the constant high levels of pro-inflammatory cytokines in the circulatory system. Of recent, dietary natural products have been shown to be anti-diabetic. The effects of resveratrol on the gut showed an improved lipid profile, anti-inflammatory properties and ameliorated the endotoxemia, tight junction and glucose intolerance.

4.
AMB Express ; 10(1): 130, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32710186

RESUMO

From the emerging studies, the more diverse the microbial population in the gut, the healthier the gut. Health benefits are associated with the functional characteristics of these diverse microbial genes. Extrinsic factors causing dysbiosis are extensively studied however, linking the varying degree of consequences to the respective factors and therapeutic possibilities are not explored at length. This review aims to examine from previous studies and put forward the types of dysbiosis, the immediate consequences and the scientific approaches to restore disrupted microbiota. Dietary supplements are found to be one of the factors contributing profoundly to the alteration of gut microbiota. While diet rich in fibre and fermented food established a diverse microbiome and produce vital metabolites, high fat, animal proteins and high caloric carbohydrate are as well relative to dysbiosis among infants, adult or diseases individuals. The intermittent fasting, feeding methods, the pH and water quality are among the factors associated with dysbiosis. Prebiotics and Probiotics maintain and restore gut homeostasis. Antibiotic-induced dysbiosis are relatively on the spectrum of activity, the pharmacokinetics properties, the dose taken during the treatment route of administration and the duration of drug therapy. The higher the altitude, the lesser the diversity. Extreme temperatures as well are related to reduced microbial activity and metabolism. Delivery through caserium-section deprived the newborn from restoring valuable vaginal bacterial species and the baby will instead assumed intestinal microbiota-like. While exercise and oxidative stress contribute even though moderately, fecal microbial transfer (FMT) also influence gut microbiota.

5.
Microb Pathog ; 145: 104233, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32360521

RESUMO

BACKGROUND: Adherent invasive Escherichia coli (AIEC) are implicated in the pathogenesis of inflammatory bowel diseases (IBD) particularly Crohn's disease (CD). The aim of this study is to isolate, identify, genotype, and characterize the virulence factors and the clinical significance of AIEC strains. METHODS: Ileal and colonic biopsies from 24 active CD patients and 15 healthy controls (HC) were collected. E. coli strains were identified by standard biochemical tests and confirmed by MALDI-TOF (bioMerieux, France) system. The AIEC phenotypes were determined by the adhesion, invasion, and survival within macrophages assays. The genetic virulence factors and genotyping characteristics were determined by PCR and PFGE respectively. The abundance and the antibiogram profile of E. coli strains was determined by qPCR and VITEK®2 (bioMerieux, France) automated system respectively. RESULTS: E. coli strains from 17 CD patients and 14 HC were isolated, 10 (59%) and 7 (50%) of them were identified as AIEC strains, respectively. We found that chuA and ratA genes were the most significant genetic markers associated with AIEC compared to non-AIEC strains isolated from CD patients and HC p = 0.0119, 0.0094 respectively. The majority of E. coli strains obtained from CD patients showed antibiotic resistance (71%) compared to HC (29%) against at least one antibiotic. The AIEC-like strains were more resistant to antibiotics compared to non-AIEC-like strains (53%) and (21%) respectively. CONCLUSIONS: We have determined significant differences between AIEC strains and non-AIEC strains in terms of the prevalence of chuA and ratA virulence genes and the antibiotic resistance profiles. In addition, AIEC strains isolated from CD patients were found to be more resistant to penicillin/beta lactam and aminoglycoside antibiotics than AIEC strains isolated from HC 80%, 14% respectively.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Aderência Bacteriana , Escherichia coli/genética , Variação Genética , Humanos , Mucosa Intestinal , Virulência , Fatores de Virulência/genética
6.
Prz Gastroenterol ; 15(4): 279-288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33777266

RESUMO

Inflammatory bowel disease (IBD) is a term that describes Crohn's disease (CD) and ulcerative colitis (UC), and these two conditions are characterised by chronic inflammation of the gastrointestinal tract. Dysbiosis of intestinal microbiota has been consistently linked to patients with IBD. In the last two decades, the progressive implication of adherent-invasive Escherichia coli (AIEC) pathogenesis in patients with CD has been increasing. Here we discuss recent findings that indicate the role and mechanisms of AIEC in IBD. We also highlight AIEC virulence factor genes and mechanisms that suggest an important role in the severity of inflammation in CD patients. Finally, we emphasise data on the prevalence of AIEC in CD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...